Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self Multi-Head Attention for Speaker Recognition (1906.09890v2)

Published 24 Jun 2019 in cs.SD, cs.LG, and stat.ML

Abstract: Most state-of-the-art Deep Learning (DL) approaches for speaker recognition work on a short utterance level. Given the speech signal, these algorithms extract a sequence of speaker embeddings from short segments and those are averaged to obtain an utterance level speaker representation. In this work we propose the use of an attention mechanism to obtain a discriminative speaker embedding given non fixed length speech utterances. Our system is based on a Convolutional Neural Network (CNN) that encodes short-term speaker features from the spectrogram and a self multi-head attention model that maps these representations into a long-term speaker embedding. The attention model that we propose produces multiple alignments from different subsegments of the CNN encoded states over the sequence. Hence this mechanism works as a pooling layer which decides the most discriminative features over the sequence to obtain an utterance level representation. We have tested this approach for the verification task for the VoxCeleb1 dataset. The results show that self multi-head attention outperforms both temporal and statistical pooling methods with a 18\% of relative EER. Obtained results show a 58\% relative improvement in EER compared to i-vector+PLDA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Miquel India (7 papers)
  2. Pooyan Safari (6 papers)
  3. Javier Hernando (15 papers)
Citations (103)

Summary

We haven't generated a summary for this paper yet.