Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sketching Datasets for Large-Scale Learning (long version)

Published 4 Aug 2020 in stat.ML, cs.IT, cs.LG, and math.IT | (2008.01839v3)

Abstract: This article considers "compressive learning," an approach to large-scale machine learning where datasets are massively compressed before learning (e.g., clustering, classification, or regression) is performed. In particular, a "sketch" is first constructed by computing carefully chosen nonlinear random features (e.g., random Fourier features) and averaging them over the whole dataset. Parameters are then learned from the sketch, without access to the original dataset. This article surveys the current state-of-the-art in compressive learning, including the main concepts and algorithms, their connections with established signal-processing methods, existing theoretical guarantees -- on both information preservation and privacy preservation, and important open problems.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.