Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Evaluating the performance of the LIME and Grad-CAM explanation methods on a LEGO multi-label image classification task (2008.01584v1)

Published 4 Aug 2020 in cs.CV

Abstract: In this paper, we run two methods of explanation, namely LIME and Grad-CAM, on a convolutional neural network trained to label images with the LEGO bricks that are visible in them. We evaluate them on two criteria, the improvement of the network's core performance and the trust they are able to generate for users of the system. We find that in general, Grad-CAM seems to outperform LIME on this specific task: it yields more detailed insight from the point of view of core performance and 80\% of respondents asked to choose between them when it comes to the trust they inspire in the model choose Grad-CAM. However, we also posit that it is more useful to employ these two methods together, as the insights they yield are complementary.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube