Papers
Topics
Authors
Recent
2000 character limit reached

Enforcing exact boundary and initial conditions in the deep mixed residual method

Published 4 Aug 2020 in math.NA and cs.NA | (2008.01491v1)

Abstract: In theory, boundary and initial conditions are important for the wellposedness of partial differential equations (PDEs). Numerically, these conditions can be enforced exactly in classical numerical methods, such as finite difference method and finite element method. Recent years have witnessed growing interests in solving PDEs by deep neural networks (DNNs), especially in the high-dimensional case. However, in the generic situation, a careful literature review shows that boundary conditions cannot be enforced exactly for DNNs, which inevitably leads to a modeling error. In this work, based on the recently developed deep mixed residual method (MIM), we demonstrate how to make DNNs satisfy boundary and initial conditions automatically in a systematic manner. As a consequence, the loss function in MIM is free of the penalty term and does not have any modeling error. Using numerous examples, including Dirichlet, Neumann, mixed, Robin, and periodic boundary conditions for elliptic equations, and initial conditions for parabolic and hyperbolic equations, we show that enforcing exact boundary and initial conditions not only provides a better approximate solution but also facilitates the training process.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.