Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
109 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
35 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
5 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

MIM: A deep mixed residual method for solving high-order partial differential equations (2006.04146v1)

Published 7 Jun 2020 in math.NA and cs.NA

Abstract: In recent years, a significant amount of attention has been paid to solve partial differential equations (PDEs) by deep learning. For example, deep Galerkin method (DGM) uses the PDE residual in the least-squares sense as the loss function and a deep neural network (DNN) to approximate the PDE solution. In this work, we propose a deep mixed residual method (MIM) to solve PDEs with high-order derivatives. In MIM, we first rewrite a high-order PDE into a first-order system, very much in the same spirit as local discontinuous Galerkin method and mixed finite element method in classical numerical methods for PDEs. We then use the residual of first-order system in the least-squares sense as the loss function, which is in close connection with least-squares finite element method. For aforementioned classical numerical methods, the choice of trail and test functions is important for stability and accuracy issues in many cases. MIM shares this property when DNNs are employed to approximate unknowns functions in the first-order system. In one case, we use nearly the same DNN to approximate all unknown functions and in the other case, we use totally different DNNs for different unknown functions. In most cases, MIM provides better approximations (not only for high-derivatives of the PDE solution but also for the PDE solution itself) than DGM with nearly the same DNN and the same execution time, sometimes by more than one order of magnitude. When different DNNs are used, in many cases, MIM provides even better approximations than MIM with only one DNN, sometimes by more than one order of magnitude. Therefore, we expect MIM to open up a possibly systematic way to understand and improve deep learning for solving PDEs from the perspective of classical numerical analysis.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.