Papers
Topics
Authors
Recent
2000 character limit reached

Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning (2008.01243v1)

Published 3 Aug 2020 in cond-mat.mtrl-sci

Abstract: Machine learning is ideally suited for the pattern detection in large uniform datasets, but consistent experimental datasets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C-C bond scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM-Pt-Pt(111) and Pt-TM-Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.