Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GmFace: A Mathematical Model for Face Image Representation Using Multi-Gaussian (2008.00752v1)

Published 3 Aug 2020 in cs.CV and cs.LG

Abstract: Establishing mathematical models is a ubiquitous and effective method to understand the objective world. Due to complex physiological structures and dynamic behaviors, mathematical representation of the human face is an especially challenging task. A mathematical model for face image representation called GmFace is proposed in the form of a multi-Gaussian function in this paper. The model utilizes the advantages of two-dimensional Gaussian function which provides a symmetric bell surface with a shape that can be controlled by parameters. The GmNet is then designed using Gaussian functions as neurons, with parameters that correspond to each of the parameters of GmFace in order to transform the problem of GmFace parameter solving into a network optimization problem of GmNet. The face modeling process can be described by the following steps: (1) GmNet initialization; (2) feeding GmNet with face image(s); (3) training GmNet until convergence; (4) drawing out the parameters of GmNet (as the same as GmFace); (5) recording the face model GmFace. Furthermore, using GmFace, several face image transformation operations can be realized mathematically through simple parameter computation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube