Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Learning Universal Representations Across Languages (2007.15960v4)

Published 31 Jul 2020 in cs.CL

Abstract: Recent studies have demonstrated the overwhelming advantage of cross-lingual pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-lingual NLP tasks. However, existing approaches essentially capture the co-occurrence among tokens through involving the masked LLM (MLM) objective with token-level cross entropy. In this work, we extend these approaches to learn sentence-level representations and show the effectiveness on cross-lingual understanding and generation. Specifically, we propose a Hierarchical Contrastive Learning (HiCTL) method to (1) learn universal representations for parallel sentences distributed in one or multiple languages and (2) distinguish the semantically-related words from a shared cross-lingual vocabulary for each sentence. We conduct evaluations on two challenging cross-lingual tasks, XTREME and machine translation. Experimental results show that the HiCTL outperforms the state-of-the-art XLM-R by an absolute gain of 4.2% accuracy on the XTREME benchmark as well as achieves substantial improvements on both of the high-resource and low-resource English-to-X translation tasks over strong baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xiangpeng Wei (15 papers)
  2. Rongxiang Weng (26 papers)
  3. Yue Hu (220 papers)
  4. Luxi Xing (16 papers)
  5. Heng Yu (61 papers)
  6. Weihua Luo (63 papers)
Citations (82)