Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Proof of Learning (PoLe): Empowering Machine Learning with Consensus Building on Blockchains (2007.15145v1)

Published 29 Jul 2020 in cs.CR and cs.LG

Abstract: The progress of deep learning (DL), especially the recent development of automatic design of networks, has brought unprecedented performance gains at heavy computational cost. On the other hand, blockchain systems routinely perform a huge amount of computation that does not achieve practical purposes in order to build Proof-of-Work (PoW) consensus from decentralized participants. In this paper, we propose a new consensus mechanism, Proof of Learning (PoLe), which directs the computation spent for consensus toward optimization of neural networks (NN). In our mechanism, the training/testing data are released to the entire blockchain network (BCN) and the consensus nodes train NN models on the data, which serves as the proof of learning. When the consensus on the BCN considers a NN model to be valid, a new block is appended to the blockchain. We experimentally compare the PoLe protocol with Proof of Work (PoW) and show that PoLe can achieve a more stable block generation rate, which leads to more efficient transaction processing. We also introduce a novel cheating prevention mechanism, Secure Mapping Layer (SML), which can be straightforwardly implemented as a linear NN layer. Empirical evaluation shows that SML can detect cheating nodes at small cost to the predictive performance.

Citations (14)

Summary

We haven't generated a summary for this paper yet.