Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Platform-Free Proof of Federated Learning Consensus Mechanism for Sustainable Blockchains (2208.12046v3)

Published 23 Aug 2022 in cs.CR and cs.GT

Abstract: Proof of work (PoW), as the representative consensus protocol for blockchain, consumes enormous amounts of computation and energy to determine bookkeeping rights among miners but does not achieve any practical purposes. To address the drawback of PoW, we propose a novel energy-recycling consensus mechanism named platform-free proof of federated learning (PF-PoFL), which leverages the computing power originally wasted in solving hard but meaningless PoW puzzles to conduct practical federated learning (FL) tasks. Nevertheless, potential security threats and efficiency concerns may occur due to the untrusted environment and miners' self-interested features. In this paper, by devising a novel block structure, new transaction types, and credit-based incentives, PF-PoFL allows efficient AI task outsourcing, federated mining, model evaluation, and reward distribution in a fully decentralized manner, while resisting spoofing and Sybil attacks. Besides, PF-PoFL equips with a user-level differential privacy mechanism for miners to prevent implicit privacy leakage in training FL models. Furthermore, by considering dynamic miner characteristics (e.g., training samples, non-IID degree, and network delay) under diverse FL tasks, a federation formation game-based mechanism is presented to distributively form the optimized disjoint miner partition structure with Nash-stable convergence. Extensive simulations validate the efficiency and effectiveness of PF-PoFL.

Citations (49)

Summary

We haven't generated a summary for this paper yet.