Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What My Motion tells me about Your Pose: A Self-Supervised Monocular 3D Vehicle Detector (2007.14812v2)

Published 29 Jul 2020 in cs.CV

Abstract: The estimation of the orientation of an observed vehicle relative to an Autonomous Vehicle (AV) from monocular camera data is an important building block in estimating its 6 DoF pose. Current Deep Learning based solutions for placing a 3D bounding box around this observed vehicle are data hungry and do not generalize well. In this paper, we demonstrate the use of monocular visual odometry for the self-supervised fine-tuning of a model for orientation estimation pre-trained on a reference domain. Specifically, while transitioning from a virtual dataset (vKITTI) to nuScenes, we recover up to 70% of the performance of a fully supervised method. We subsequently demonstrate an optimization-based monocular 3D bounding box detector built on top of the self-supervised vehicle orientation estimator without the requirement of expensive labeled data. This allows 3D vehicle detection algorithms to be self-trained from large amounts of monocular camera data from existing commercial vehicle fleets.

Summary

We haven't generated a summary for this paper yet.