Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection and Segmentation of Custom Objects using High Distraction Photorealistic Synthetic Data (2007.14354v2)

Published 28 Jul 2020 in cs.CV

Abstract: We show a straightforward and useful methodology for performing instance segmentation using synthetic data. We apply this methodology on a basic case and derived insights through quantitative analysis. We created a new public dataset: The Expo Markers Dataset intended for detection and segmentation tasks. This dataset contains 5,000 synthetic photorealistic images with their corresponding pixel-perfect segmentation ground truth. The goal is to achieve high performance on manually-gathered and annotated real-world data of custom objects. We do that by creating 3D models of the target objects and other possible distraction objects and place them within a simulated environment. Expo Markers were chosen for this task, fitting our requirements of a custom object due to the exact texture, size and 3D shape. An additional advantage is the availability of this object in offices around the world for easy testing and validation of our results. We generate the data using a domain randomization technique that also simulates other photorealistic objects in the scene, known as distraction objects. These objects provide visual complexity, occlusions, and lighting challenges to help our model gain robustness in training. We are also releasing our manually-gathered datasets used for comparison and evaluation of our synthetic dataset. This white-paper provides strong evidence that photorealistic simulated data can be used in practical real world applications as a more scalable and flexible solution than manually-captured data. Code is available at the following address: https://github.com/DataGenResearchTeam/expo_markers

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Roey Ron (2 papers)
  2. Gil Elbaz (3 papers)
Github Logo Streamline Icon: https://streamlinehq.com