Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An extremal problem arising in the dynamics of two-phase materials that directly reveals information about the internal geometry (2007.13964v2)

Published 28 Jul 2020 in math-ph and math.MP

Abstract: In two phase materials, each phase having a non-local response in time, it has been found that for some driving fields the response somehow untangles at specific times, and allows one to directly infer useful information about the geometry of the material, such as the volume fractions of the phases. Motivated by this, and to obtain an algorithm for designing appropriate driving fields, we find approximate, measure independent, linear relations between the values that Markov functions take at a given set of possibly complex points, not belonging to the interval [-1,1] where the measure is supported. The problem is reduced to simply one of polynomial approximation of a given function on the interval [-1,1] and to simplify the analysis Chebyshev approximation is used. This allows one to obtain explicit estimates of the error of the approximation, in terms of the number of points and the minimum distance of the points to the interval [-1,1]. Assuming this minimum distance is bounded below by a number greater than 1/2, the error converges exponentially to zero as the number of points is increased. Approximate linear relations are also obtained that incorporate a set of moments of the measure. In the context of the motivating problem, the analysis also yields bounds on the response at any particular time for any driving field, and allows one to estimate the response at a given frequency using an appropriately designed driving field that effectively is turned on only for a fixed interval of time. The approximation extends directly to Markov-type functions with a positive semidefinite operator valued measure, and this has applications to determining the shape of an inclusion in a body from boundary flux measurements at a specific time, when the time-dependent boundary potentials are suitably tailored.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.