Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CPAS: the UK's National Machine Learning-based Hospital Capacity Planning System for COVID-19 (2007.13825v1)

Published 27 Jul 2020 in cs.LG and stat.ML

Abstract: The coronavirus disease 2019 (COVID-19) global pandemic poses the threat of overwhelming healthcare systems with unprecedented demands for intensive care resources. Managing these demands cannot be effectively conducted without a nationwide collective effort that relies on data to forecast hospital demands on the national, regional, hospital and individual levels. To this end, we developed the COVID-19 Capacity Planning and Analysis System (CPAS) - a machine learning-based system for hospital resource planning that we have successfully deployed at individual hospitals and across regions in the UK in coordination with NHS Digital. In this paper, we discuss the main challenges of deploying a machine learning-based decision support system at national scale, and explain how CPAS addresses these challenges by (1) defining the appropriate learning problem, (2) combining bottom-up and top-down analytical approaches, (3) using state-of-the-art machine learning algorithms, (4) integrating heterogeneous data sources, and (5) presenting the result with an interactive and transparent interface. CPAS is one of the first machine learning-based systems to be deployed in hospitals on a national scale to address the COVID-19 pandemic - we conclude the paper with a summary of the lessons learned from this experience.

Citations (40)

Summary

We haven't generated a summary for this paper yet.