Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock Prices and News

Published 23 Jul 2020 in q-fin.ST and cs.LG | (2007.12620v1)

Abstract: In recent years, machine learning and deep learning have become popular methods for financial data analysis, including financial textual data, numerical data, and graphical data. This paper proposes to use sentiment analysis to extract useful information from multiple textual data sources and a blending ensemble deep learning model to predict future stock movement. The blending ensemble model contains two levels. The first level contains two Recurrent Neural Networks (RNNs), one Long-Short Term Memory network (LSTM) and one Gated Recurrent Units network (GRU), followed by a fully connected neural network as the second level model. The RNNs, LSTM, and GRU models can effectively capture the time-series events in the input data, and the fully connected neural network is used to ensemble several individual prediction results to further improve the prediction accuracy. The purpose of this work is to explain our design philosophy and show that ensemble deep learning technologies can truly predict future stock price trends more effectively and can better assist investors in making the right investment decision than other traditional methods.

Citations (132)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.