Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wind speed prediction using multidimensional convolutional neural networks (2007.12567v1)

Published 4 Jul 2020 in cs.LG

Abstract: Accurate wind speed forecasting is of great importance for many economic, business and management sectors. This paper introduces a new model based on convolutional neural networks (CNNs) for wind speed prediction tasks. In particular, we show that compared to classical CNN-based models, the proposed model is able to better characterise the spatio-temporal evolution of the wind data by learning the underlying complex input-output relationships from multiple dimensions (views) of the input data. The proposed model exploits the spatio-temporal multivariate multidimensional historical weather data for learning new representations used for wind forecasting. We conduct experiments on two real-life weather datasets. The datasets are measurements from cities in Denmark and in the Netherlands. The proposed model is compared with traditional 2- and 3-dimensional CNN models, a 2D-CNN model with an attention layer and a 2D-CNN model equipped with upscaling and depthwise separable convolutions.

Citations (36)

Summary

We haven't generated a summary for this paper yet.