Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A sound interpretation of Leśniewski's epsilon in modal logic KTB (2007.12006v2)

Published 22 Jul 2020 in math.LO and cs.LO

Abstract: In this paper, we shall show that the following translation $IM$ from the propositional fragment $\bf L_1$ of Le\'{s}niewski's ontology to modal logic $\bf KTB$ is sound: for any formula $\phi$ and $\psi$ of $\bf L_1$, it is defined as \smallskip (M1) $IM(\phi \vee \psi)$ = $IM(\phi) \vee IM(\psi),$ (M2) $IM(\neg \phi)$ = $\neg IM(\phi),$ (M3) $IM(\epsilon ab)$ = $\Diamond p_a \supset p_a . \wedge . \Box p_a \supset \Box p_b . \wedge . \Diamond p_b \supset p_a,$ \smallskip \noindent where $p_a$ and $p_b$ are propositional variables corresponding to the name variables $a$ and $b$, respectively. In the last section, we shall give some open problems and my conjectures.

Citations (3)

Summary

We haven't generated a summary for this paper yet.