Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regularization of Building Boundaries in Satellite Images using Adversarial and Regularized Losses

Published 23 Jul 2020 in eess.IV and cs.CV | (2007.11840v1)

Abstract: In this paper we present a method for building boundary refinement and regularization in satellite images using a fully convolutional neural network trained with a combination of adversarial and regularized losses. Compared to a pure Mask R-CNN model, the overall algorithm can achieve equivalent performance in terms of accuracy and completeness. However, unlike Mask R-CNN that produces irregular footprints, our framework generates regularized and visually pleasing building boundaries which are beneficial in many applications.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.