Papers
Topics
Authors
Recent
2000 character limit reached

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation

Published 12 Apr 2021 in cs.CV | (2104.05239v1)

Abstract: Tremendous efforts have been made on instance segmentation but the mask quality is still not satisfactory. The boundaries of predicted instance masks are usually imprecise due to the low spatial resolution of feature maps and the imbalance problem caused by the extremely low proportion of boundary pixels. To address these issues, we propose a conceptually simple yet effective post-processing refinement framework to improve the boundary quality based on the results of any instance segmentation model, termed BPR. Following the idea of looking closer to segment boundaries better, we extract and refine a series of small boundary patches along the predicted instance boundaries. The refinement is accomplished by a boundary patch refinement network at higher resolution. The proposed BPR framework yields significant improvements over the Mask R-CNN baseline on Cityscapes benchmark, especially on the boundary-aware metrics. Moreover, by applying the BPR framework to the PolyTransform + SegFix baseline, we reached 1st place on the Cityscapes leaderboard.

Citations (70)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.