Papers
Topics
Authors
Recent
2000 character limit reached

Pattern-Guided Integrated Gradients (2007.10685v2)

Published 21 Jul 2020 in cs.LG and stat.ML

Abstract: Integrated Gradients (IG) and PatternAttribution (PA) are two established explainability methods for neural networks. Both methods are theoretically well-founded. However, they were designed to overcome different challenges. In this work, we combine the two methods into a new method, Pattern-Guided Integrated Gradients (PGIG). PGIG inherits important properties from both parent methods and passes stress tests that the originals fail. In addition, we benchmark PGIG against nine alternative explainability approaches (including its parent methods) in a large-scale image degradation experiment and find that it outperforms all of them.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.