Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When deep learning meets causal inference: a computational framework for drug repurposing from real-world data (2007.10152v1)

Published 16 Jul 2020 in stat.AP and cs.LG

Abstract: Drug repurposing is an effective strategy to identify new uses for existing drugs, providing the quickest possible transition from bench to bedside. Existing methods for drug repurposing that mainly focus on pre-clinical information may exist translational issues when applied to human beings. Real world data (RWD), such as electronic health records and insurance claims, provide information on large cohorts of users for many drugs. Here we present an efficient and easily-customized framework for generating and testing multiple candidates for drug repurposing using a retrospective analysis of RWDs. Building upon well-established causal inference and deep learning methods, our framework emulates randomized clinical trials for drugs present in a large-scale medical claims database. We demonstrate our framework in a case study of coronary artery disease (CAD) by evaluating the effect of 55 repurposing drug candidates on various disease outcomes. We achieve 6 drug candidates that significantly improve the CAD outcomes but not have been indicated for treating CAD, paving the way for drug repurposing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ruoqi Liu (10 papers)
  2. Lai Wei (68 papers)
  3. Ping Zhang (437 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.