Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bitcoin Transaction Forecasting with Deep Network Representation Learning (2007.07993v2)

Published 15 Jul 2020 in cs.SI and cs.LG

Abstract: Bitcoin and its decentralized computing paradigm for digital currency trading are one of the most disruptive technology in the 21st century. This paper presents a novel approach to developing a Bitcoin transaction forecast model, DLForecast, by leveraging deep neural networks for learning Bitcoin transaction network representations. DLForecast makes three original contributions. First, we explore three interesting properties between Bitcoin transaction accounts: topological connectivity pattern of Bitcoin accounts, transaction amount pattern, and transaction dynamics. Second, we construct a time-decaying reachability graph and a time-decaying transaction pattern graph, aiming at capturing different types of spatial-temporal Bitcoin transaction patterns. Third, we employ node embedding on both graphs and develop a Bitcoin transaction forecasting system between user accounts based on historical transactions with built-in time-decaying factor. To maintain an effective transaction forecasting performance, we leverage the multiplicative model update (MMU) ensemble to combine prediction models built on different transaction features extracted from each corresponding Bitcoin transaction graph. Evaluated on real-world Bitcoin transaction data, we show that our spatial-temporal forecasting model is efficient with fast runtime and effective with forecasting accuracy over 60\% and improves the prediction performance by 50\% when compared to forecasting model built on the static graph baseline.

Citations (20)

Summary

We haven't generated a summary for this paper yet.