Papers
Topics
Authors
Recent
2000 character limit reached

How to Morph Graphs on the Torus

Published 15 Jul 2020 in cs.CG | (2007.07927v1)

Abstract: We present the first algorithm to morph graphs on the torus. Given two isotopic essentially 3-connected embeddings of the same graph on the Euclidean flat torus, where the edges in both drawings are geodesics, our algorithm computes a continuous deformation from one drawing to the other, such that all edges are geodesics at all times. Previously even the existence of such a morph was not known. Our algorithm runs in $O(n{1+\omega/2})$ time, where $\omega$ is the matrix multiplication exponent, and the computed morph consists of $O(n)$ parallel linear morphing steps. Existing techniques for morphing planar straight-line graphs do not immediately generalize to graphs on the torus; in particular, Cairns' original 1944 proof and its more recent improvements rely on the fact that every planar graph contains a vertex of degree at most 5. Our proof relies on a subtle geometric analysis of 6-regular triangulations of the torus. We also make heavy use of a natural extension of Tutte's spring embedding theorem to torus graphs.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.