Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Plattenbauten: Touching Rectangles in Space (2007.07806v2)

Published 15 Jul 2020 in math.CO, cs.CG, and cs.DM

Abstract: Planar bipartite graphs can be represented as touching graphs of horizontal and vertical segments in $\mathbb{R}2$. We study a generalization in space: touching graphs of axis-aligned rectangles in $\mathbb{R}3$, and prove that planar 3-colorable graphs can be represented this way. The result implies a characterization of corner polytopes previously obtained by Eppstein and Mumford. A by-product of our proof is a distributive lattice structure on the set of orthogonal surfaces with given skeleton. Further, we study representations by axis-aligned non-coplanar rectangles in $\mathbb{R}3$ such that all regions are boxes. We show that the resulting graphs correspond to octahedrations of an octahedron. This generalizes the correspondence between planar quadrangulations and families of horizontal and vertical segments in $\mathbb{R}2$ with the property that all regions are rectangles.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.