Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adjacency Graphs of Polyhedral Surfaces (2103.09803v2)

Published 17 Mar 2021 in cs.CG

Abstract: We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $\mathbb{R}3$. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $K_5$, $K_{5,81}$, or any nonplanar $3$-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $K_{4,4}$, and $K_{3,5}$ can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable $n$-vertex graphs is in $\Omega(n \log n)$. From the non-realizability of $K_{5,81}$, we obtain that any realizable $n$-vertex graph has $O(n{9/5})$ edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.

Citations (1)

Summary

We haven't generated a summary for this paper yet.