Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Follow the bisector: a simple method for multi-objective optimization (2007.06937v1)

Published 14 Jul 2020 in math.OC and cs.LG

Abstract: This study presents a novel Equiangular Direction Method (EDM) to solve a multi-objective optimization problem. We consider optimization problems, where multiple differentiable losses have to be minimized. The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions. This descent direction is based on the normalized gradients of the individual losses. Therefore, it is appropriate to solve multi-objective optimization problems with multi-scale losses. We test the proposed method on the imbalanced classification problem and multi-task learning problem, where standard datasets are used. EDM is compared with other methods to solve these problems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.