Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-efficient Cardiac Segmentation (2007.06279v1)

Published 13 Jul 2020 in cs.CV

Abstract: Medical image annotations are prohibitively time-consuming and expensive to obtain. To alleviate annotation scarcity, many approaches have been developed to efficiently utilize extra information, e.g.,semi-supervised learning further exploring plentiful unlabeled data, domain adaptation including multi-modality learning and unsupervised domain adaptation resorting to the prior knowledge from additional modality. In this paper, we aim to investigate the feasibility of simultaneously leveraging abundant unlabeled data and well-established cross-modality data for annotation-efficient medical image segmentation. To this end, we propose a novel semi-supervised domain adaptation approach, namely Dual-Teacher, where the student model not only learns from labeled target data (e.g., CT), but also explores unlabeled target data and labeled source data (e.g., MR) by two teacher models. Specifically, the student model learns the knowledge of unlabeled target data from intra-domain teacher by encouraging prediction consistency, as well as the shape priors embedded in labeled source data from inter-domain teacher via knowledge distillation. Consequently, the student model can effectively exploit the information from all three data resources and comprehensively integrate them to achieve improved performance. We conduct extensive experiments on MM-WHS 2017 dataset and demonstrate that our approach is able to concurrently utilize unlabeled data and cross-modality data with superior performance, outperforming semi-supervised learning and domain adaptation methods with a large margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kang Li (207 papers)
  2. Shujun Wang (46 papers)
  3. Lequan Yu (89 papers)
  4. Pheng-Ann Heng (196 papers)
Citations (50)

Summary

We haven't generated a summary for this paper yet.