Height Pairing on Higher Cycles and Mixed Hodge Structures
Abstract: For a smooth, projective complex variety, we introduce several mixed Hodge structures associated to higher algebraic cycles. Most notably, we introduce a mixed Hodge structure for a pair of higher cycles which are in the refined normalized complex and intersect properly. In a special case, this mixed Hodge structure is an oriented biextension, and its height agrees with the higher archimedean height pairing introduced in a previous paper by the first two authors. We also compute a non-trivial example of this height given by Bloch-Wigner dilogarithm function. Finally we study the variation of mixed Hodge structures of Hodge-Tate type, and show that the height extends continuously to degenerate situations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.