Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Prediction Serving on Low-Latency Serverless Dataflow (2007.05832v1)

Published 11 Jul 2020 in cs.DC

Abstract: Prediction serving systems are designed to provide large volumes of low-latency inferences machine learning models. These systems mix data processing and computationally intensive model inference and benefit from multiple heterogeneous processors and distributed computing resources. In this paper, we argue that a familiar dataflow API is well-suited to this latency-sensitive task, and amenable to optimization even with unmodified black-box ML models. We present the design of Cloudflow, a system that provides this API and realizes it on an autoscaling serverless backend. Cloudflow transparently implements performance-critical optimizations including operator fusion and competitive execution. Our evaluation shows that Cloudflow's optimizations yield significant performance improvements on synthetic workloads and that Cloudflow outperforms state-of-the-art prediction serving systems by as much as 2x on real-world prediction pipelines, meeting latency goals of demanding applications like real-time video analysis.

Citations (19)

Summary

We haven't generated a summary for this paper yet.