Papers
Topics
Authors
Recent
2000 character limit reached

Distributed-Memory DMRG via Sparse and Dense Parallel Tensor Contractions

Published 10 Jul 2020 in cs.DC, cond-mat.str-el, and physics.comp-ph | (2007.05540v1)

Abstract: The Density Matrix Renormalization Group (DMRG) algorithm is a powerful tool for solving eigenvalue problems to model quantum systems. DMRG relies on tensor contractions and dense linear algebra to compute properties of condensed matter physics systems. However, its efficient parallel implementation is challenging due to limited concurrency, large memory footprint, and tensor sparsity. We mitigate these problems by implementing two new parallel approaches that handle block sparsity arising in DMRG, via Cyclops, a distributed memory tensor contraction library. We benchmark their performance on two physical systems using the Blue Waters and Stampede2 supercomputers. Our DMRG performance is improved by up to 5.9X in runtime and 99X in processing rate over ITensor, at roughly comparable computational resource use. This enables higher accuracy calculations via larger tensors for quantum state approximation. We demonstrate that despite having limited concurrency, DMRG is weakly scalable with the use of efficient parallel tensor contraction mechanisms.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.