Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulation of Quantum Many-Body Systems on Amazon Cloud (1908.08553v2)

Published 22 Aug 2019 in cs.DC, cond-mat.str-el, and quant-ph

Abstract: Quantum many-body systems (QMBs) are some of the most challenging physical systems to simulate numerically. Methods involving approximations for tensor network (TN) contractions have proven to be viable alternatives to algorithms such as quantum Monte Carlo or simulated annealing. However, these methods are cumbersome, difficult to implement, and often have significant limitations in their accuracy and efficiency when considering systems in more than one dimension. In this paper, we explore the exact computation of TN contractions on two-dimensional geometries and present a heuristic improvement of TN contraction that reduces the computing time, the amount of memory, and the communication time. We run our algorithm for the Ising model using memory optimized x1.32x large instances on Amazon Web Services (AWS) Elastic Compute Cloud (EC2). Our results show that cloud computing is a viable alternative to supercomputers for this class of scientific applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.