Papers
Topics
Authors
Recent
2000 character limit reached

Discount Factor as a Regularizer in Reinforcement Learning

Published 4 Jul 2020 in cs.LG, cs.AI, and stat.ML | (2007.02040v1)

Abstract: Specifying a Reinforcement Learning (RL) task involves choosing a suitable planning horizon, which is typically modeled by a discount factor. It is known that applying RL algorithms with a lower discount factor can act as a regularizer, improving performance in the limited data regime. Yet the exact nature of this regularizer has not been investigated. In this work, we fill in this gap. For several Temporal-Difference (TD) learning methods, we show an explicit equivalence between using a reduced discount factor and adding an explicit regularization term to the algorithm's loss. Motivated by the equivalence, we empirically study this technique compared to standard $L_2$ regularization by extensive experiments in discrete and continuous domains, using tabular and functional representations. Our experiments suggest the regularization effectiveness is strongly related to properties of the available data, such as size, distribution, and mixing rate.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.