Papers
Topics
Authors
Recent
2000 character limit reached

A Machine Learning Pipeline Stage for Adaptive Frequency Adjustment

Published 2 Jul 2020 in cs.AR and cs.PF | (2007.01820v1)

Abstract: A ML design framework is proposed for adaptively adjusting clock frequency based on propagation delay of individual instructions. A random forest model is trained to classify propagation delays in real time, utilizing current operation type, current operands, and computation history as ML features. The trained model is implemented in Verilog as an additional pipeline stage within a baseline processor. The modified system is experimentally tested at the gate level in 45 nm CMOS technology, exhibiting a speedup of 70% and energy reduction of 30% with coarse-grained ML classification. A speedup of 89% is demonstrated with finer granularities with 15.5% reduction in energy consumption.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.