Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MATADOR: Automated System-on-Chip Tsetlin Machine Design Generation for Edge Applications (2403.10538v1)

Published 3 Mar 2024 in cs.AR, cs.AI, and cs.LG

Abstract: System-on-Chip Field-Programmable Gate Arrays (SoC-FPGAs) offer significant throughput gains for ML edge inference applications via the design of co-processor accelerator systems. However, the design effort for training and translating ML models into SoC-FPGA solutions can be substantial and requires specialist knowledge aware trade-offs between model performance, power consumption, latency and resource utilization. Contrary to other ML algorithms, Tsetlin Machine (TM) performs classification by forming logic proposition between boolean actions from the Tsetlin Automata (the learning elements) and boolean input features. A trained TM model, usually, exhibits high sparsity and considerable overlapping of these logic propositions both within and among the classes. The model, thus, can be translated to RTL-level design using a miniscule number of AND and NOT gates. This paper presents MATADOR, an automated boolean-to-silicon tool with GUI interface capable of implementing optimized accelerator design of the TM model onto SoC-FPGA for inference at the edge. It offers automation of the full development pipeline: model training, system level design generation, design verification and deployment. It makes use of the logic sharing that ensues from propositional overlap and creates a compact design by effectively utilizing the TM model's sparsity. MATADOR accelerator designs are shown to be up to 13.4x faster, up to 7x more resource frugal and up to 2x more power efficient when compared to the state-of-the-art Quantized and Binary Deep Neural Network implementations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu, M. Leeser, and K. Vissers, “FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks,” ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 3, dec 2018.
  2. G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’19.   Association for Computing Machinery, 2019, p. 199–213.
  3. Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers, “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17.   New York, NY, USA: Association for Computing Machinery, 2017, p. 65–74.
  4. Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic Generation of FPGA-Based Learning Accelerators for the Neural Network Family,” in Proceedings of the 53rd Annual Design Automation Conference, ser. DAC ’16.   New York, NY, USA: Association for Computing Machinery, 2016.
  5. S. Maheshwari, T. Rahman, R. Shafik, A. Yakovlev, A. Rafiev, L. Jiao, and O.-C. Granmo, “REDRESS: Generating Compressed Models for Edge Inference Using Tsetlin Machines,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–16, 2023.
  6. L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey,” Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.
  7. S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs,” in 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2016, pp. 40–47.
  8. J. J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya, J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G.-Y. Wei, and D. Brooks, “Towards Automatic and Agile AI/ML Accelerator Design with End-to-End Synthesis,” in 2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2021, pp. 218–225.
  9. O. Granmo, “The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic,” CoRR, vol. abs/1804.01508, 2018.
  10. J. Sharma, R. K. Yadav, O. Granmo, and L. Jiao, “Drop Clause: Enhancing Performance, Interpretability and Robustness of the Tsetlin Machine,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 11, 2023.
  11. A. Bakar, T. Rahman, A. Montanari, J. Lei, R. Shafik, and F. Kawsar, “Logic-Based Intelligence for Batteryless Sensors,” in Proceedings of the 23rd Annual International Workshop on Mobile Computing Systems and Applications, ser. HotMobile ’22.   New York, NY, USA: Association for Computing Machinery, 2022, p. 22–28.
  12. A. Bakar, T. Rahman, R. Shafik, F. Kawsar, and A. Montanari, “Adaptive Intelligence for Batteryless Sensors Using Software-Accelerated Tsetlin Machines,” in Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys ’22, 2023, p. 236–249.
  13. S. J. Ojukwu, S. Maheshwari, R. Shafik, A. Yakovlev, and M. Mamlouk, “AI-Driven Battery State-of-Charge Estimation using Electrochemical Impedance Spectroscopy,” in Second International Symposium on the Tsetlin Machine, 2023.
  14. O. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and G. T. Berge, “The Convolutional Tsetlin Machine,” CoRR, vol. abs/1905.09688, 2019. [Online]. Available: http://arxiv.org/abs/1905.09688
  15. D. Abeyrathna, O.-C. Granmo, and M. Goodwin, “Convolutional regression tsetlin machine: An interpretable approach to convolutional regression,” 2021 6th International Conference on Machine Learning Technologies, 2021.
  16. S. Glimsdal and O. Granmo, “Coalesced multi-output tsetlin machines with clause sharing,” CoRR, vol. abs/2108.07594, 2021. [Online]. Available: https://arxiv.org/abs/2108.07594
  17. T. Rahman, S. Maheshwari, R. Shafik, A. Yakovlev, and S. Das, “MILEAGE: An automated optimal clause search paradigm for Tsetlin Machines,” in First International Symposium on the Tsetlin Machine, 2022.
  18. O. Tarasyuk, A. Gorbenko, T. Rahman, R. Shafik, A. Yakovlev, O.-C. Granmo, and L. Jiao, “Systematic Search for Optimal Hyper-parameters of the Tsetlin Machine on MNIST Dataset,” in Second International Symposium on the Tsetlin Machine, 2023.
  19. S. Maheshwari, T. Rahman, A. Wheeldon, R. Shafik, A. Yakovlev, and F. Xia, “Introducing TRIM Automata for Tsetlin Machines,” in Second International Symposium on the Tsetlin Machine, 2023.
  20. S. A. Tunheim, R. K. Yadav, L. Jiao, R. Shafik, and O.-C. Granmo, “Cyclostationary Random Number Sequences for the Tsetlin Machine,” in Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence, H. Fujita, P. Fournier-Viger, M. Ali, and Y. Wang, Eds.   Springer International Publishing, 2022, pp. 844–856.
  21. T. Rahman, G. Mao, S. Maheshwari, K. Krishnamurthy, R. Shafik, and A. Yakovlev, “Parallel Symbiotic Random Number Generator for Training Tsetlin Machines on FPGA,” in Second International Symposium on the Tsetlin Machine, 2023.
  22. A. Wheeldon, R. Shafik, T. Rahman, J. Lei, A. Yakovlev, and O.-C. Granmo, “Learning automata based energy-efficient AI hardware design for IoT applications,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 378, no. 2182, 2020.
  23. S. A. Tunheim, L. Jiao, R. Shafik, A. Yakovlev, and O.-C. Granmo, “A Convolutional Tsetlin Machine-based Field Programmable Gate Array Accelerator for Image Classification,” in 2022 International Symposium on the Tsetlin Machine (ISTM), 2022, pp. 21–28.
  24. R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1988, DOI: https://doi.org/10.24432/C56C76.
  25. L. Deng, “The MNIST database of handwritten digit images for machine learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.
  26. A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of Toronto, Tech. Rep., 2009.

Summary

We haven't generated a summary for this paper yet.