Volesti: Volume Approximation and Sampling for Convex Polytopes in R (2007.01578v3)
Abstract: Sampling from high dimensional distributions and volume approximation of convex bodies are fundamental operations that appear in optimization, finance, engineering, artificial intelligence and machine learning. In this paper we present volesti, an R package that provides efficient, scalable algorithms for volume estimation, uniform and Gaussian sampling from convex polytopes. volesti scales to hundreds of dimensions, handles efficiently three different types of polyhedra and provides non existing sampling routines to R. We demonstrate the power of volesti by solving several challenging problems using the R language.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.