Papers
Topics
Authors
Recent
2000 character limit reached

Nonlocal Effective Electromagnetic Wave Characteristics of Composite Media: Beyond the Quasistatic Regime

Published 1 Jul 2020 in cond-mat.soft, cond-mat.mtrl-sci, and physics.app-ph | (2007.00701v2)

Abstract: We derive exact nonlocal expressions for the effective dielectric constant tensor ${\boldsymbol \varepsilon}_e({\bf k}_I, \omega)$ of disordered two-phase composites and metamaterials from first principles. This formalism extends the long-wavelength limitations of conventional homogenization estimates of ${\boldsymbol \varepsilon}_e({\bf k}_I, \omega)$ for arbitrary microstructures so that it can capture spatial dispersion well beyond the quasistatic regime (where $\omega$ and ${\bf k}_I$ are frequency and wavevector of the incident radiation). This is done by deriving nonlocal strong-contrast expansions that exactly account for multiple scattering for the range of wavenumbers for which our extended homogenization theory applies, i.e., $0 \le |{\bf k}_I| \ell \lesssim 1$ (where $\ell$ is a characteristic heterogeneity length scale). Due to the fast-convergence properties of such expansions, their lower-order truncations yield accurate closed-form approximate formulas for ${\varepsilon}_e({\bf k}_I,\omega)$ that incorporate microstructural information via the spectral density, which is easy to compute for any composite. The accuracy of these microstructure-dependent approximations is validated by comparison to full-waveform simulation methods for both 2D and 3D ordered and disordered models of composite media. Thus, our closed-form formulas enable one to predict accurately and efficiently the effective wave characteristics well beyond the quasistatic regime without having to perform full-blown simulations. Among other results, we show that certain disordered hyperuniform particulate composites exhibit novel wave characteristics. Our results demonstrate that one can design the effective wave characteristics of a disordered composite by engineering the microstructure to possess tailored spatial correlations at prescribed length scales.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.