Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nonlocal Effective Electromagnetic Wave Characteristics of Composite Media: Beyond the Quasistatic Regime (2007.00701v2)

Published 1 Jul 2020 in cond-mat.soft, cond-mat.mtrl-sci, and physics.app-ph

Abstract: We derive exact nonlocal expressions for the effective dielectric constant tensor ${\boldsymbol \varepsilon}_e({\bf k}_I, \omega)$ of disordered two-phase composites and metamaterials from first principles. This formalism extends the long-wavelength limitations of conventional homogenization estimates of ${\boldsymbol \varepsilon}_e({\bf k}_I, \omega)$ for arbitrary microstructures so that it can capture spatial dispersion well beyond the quasistatic regime (where $\omega$ and ${\bf k}_I$ are frequency and wavevector of the incident radiation). This is done by deriving nonlocal strong-contrast expansions that exactly account for multiple scattering for the range of wavenumbers for which our extended homogenization theory applies, i.e., $0 \le |{\bf k}_I| \ell \lesssim 1$ (where $\ell$ is a characteristic heterogeneity length scale). Due to the fast-convergence properties of such expansions, their lower-order truncations yield accurate closed-form approximate formulas for ${\varepsilon}_e({\bf k}_I,\omega)$ that incorporate microstructural information via the spectral density, which is easy to compute for any composite. The accuracy of these microstructure-dependent approximations is validated by comparison to full-waveform simulation methods for both 2D and 3D ordered and disordered models of composite media. Thus, our closed-form formulas enable one to predict accurately and efficiently the effective wave characteristics well beyond the quasistatic regime without having to perform full-blown simulations. Among other results, we show that certain disordered hyperuniform particulate composites exhibit novel wave characteristics. Our results demonstrate that one can design the effective wave characteristics of a disordered composite by engineering the microstructure to possess tailored spatial correlations at prescribed length scales.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube