Papers
Topics
Authors
Recent
2000 character limit reached

Metamaterials: $\textit{supra}$-classical dynamic homogenization

Published 22 Jul 2015 in cond-mat.mtrl-sci, math-ph, and math.MP | (1507.06252v2)

Abstract: Metamaterials are artificial composite structures designed for controlling waves or fields, and exhibit interaction phenomena that are unexpected on the basis of their chemical constituents. These phenomena are encoded in effective material parameters that can be electronic, magnetic, acoustic, or elastic, and must adequately represent the wave interaction behaviour in the composite within desired frequency ranges. In some cases -- for example, the low frequency regime -- there exist various efficient ways by which effective material parameters for wave propagation in metamaterials may be found. However, the general problem of predicting frequency-dependent dynamic effective constants has remained unsolved. Here, we obtain novel mathematical expressions for the effective parameters of two-dimensional metamaterial systems valid at higher frequencies and wavelengths than previously possible. By way of an example, random configurations of cylindrical scatterers are considered, in various physical contexts: sound waves in a compressible fluid, anti-plane elastic waves, and electromagnetic waves. Our results point towards a paradigm shift in our understanding of these effective properties, and metamaterial designs with functionalities beyond the low-frequency regime are now open for innovation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.