Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A new way to classify 2D higher order quantum superintegrable systems (2006.15677v2)

Published 28 Jun 2020 in math-ph and math.MP

Abstract: We revise a method by Kalnins, Kress and Miller (2010) for constructing a canonical form for symmetry operators of arbitrary order for the Schr\"odinger eigenvalue equation $H\Psi \equiv (\Delta_2 +V)\Psi=E\Psi$ on any 2D Riemannian manifold, real or complex, that admits a separation of variables in some orthogonal coordinate system. We apply the method, as an example, to revisit the Tremblay and Winternitz (2010) derivation of the Painlev\'e VI potential for a 3rd order superintegrable flat space system that separates in polar coordinates and, as new results, we give a listing of the possible potentials on the 2-sphere that separate in spherical coordinates and 2-hyperbolic (two-sheet) potentials separating in horocyclic coordinates. In particular, we show that the Painlev\'e VI potential also appears for a 3rd order superintegrable system on the 2-sphere that separates in spherical coordinates, as well as a 3rd order superintegrable system on the 2-hyperboloid that separates in spherical coordinates and one that separates in horocyclic coordinates. Our aim is to develop tools for analysis and classification of higher order superintegrable systems on any 2D Riemannian space, not just Euclidean space.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube