Papers
Topics
Authors
Recent
Search
2000 character limit reached

Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model

Published 27 Jun 2020 in q-fin.MF | (2006.15431v1)

Abstract: We introduce stochastic volatility models, in which the volatility is described by a time-dependent nonnegative function of a reflecting diffusion. The idea to use reflecting diffusions as building blocks of the volatility came into being because of a certain volatility misspecification in the classical Stein and Stein model. A version of this model that uses the reflecting Ornstein-Uhlenbeck process as the volatility process is a special example of a stochastic volatility model with reflection. The main results obtained in the present paper are sample path and small-noise large deviation principles for the log-price process in a stochastic volatility model with reflection under rather mild restrictions. We use these results to study the asymptotic behavior of binary barrier options and call prices in the small-noise regime.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.