Small-time asymptotics for fast mean-reverting stochastic volatility models (1009.2782v3)
Abstract: In this paper, we study stochastic volatility models in regimes where the maturity is small, but large compared to the mean-reversion time of the stochastic volatility factor. The problem falls in the class of averaging/homogenization problems for nonlinear HJB-type equations where the "fast variable" lives in a noncompact space. We develop a general argument based on viscosity solutions which we apply to the two regimes studied in the paper. We derive a large deviation principle, and we deduce asymptotic prices for out-of-the-money call and put options, and their corresponding implied volatilities. The results of this paper generalize the ones obtained in Feng, Forde and Fouque [SIAM J. Financial Math. 1 (2010) 126-141] by a moment generating function computation in the particular case of the Heston model.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.