Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoCP: Automated Pipelines for Accurate Prediction Intervals (2006.14099v2)

Published 24 Jun 2020 in cs.LG and stat.ML

Abstract: Successful application of machine learning models to real-world prediction problems, e.g. financial forecasting and personalized medicine, has proved to be challenging, because such settings require limiting and quantifying the uncertainty in the model predictions, i.e. providing valid and accurate prediction intervals. Conformal Prediction is a distribution-free approach to construct valid prediction intervals in finite samples. However, the prediction intervals constructed by Conformal Prediction are often (because of over-fitting, inappropriate measures of nonconformity, or other issues) overly conservative and hence inadequate for the application(s) at hand. This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP). Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate while optimizing the interval length to be accurate and less conservative. We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.

Summary

We haven't generated a summary for this paper yet.