Papers
Topics
Authors
Recent
2000 character limit reached

Determining Secondary Attributes for Credit Evaluation in P2P Lending

Published 8 Jun 2020 in q-fin.GN, cs.LG, q-fin.RM, and stat.ML | (2006.13921v1)

Abstract: There has been an increased need for secondary means of credit evaluation by both traditional banking organizations as well as peer-to-peer lending entities. This is especially important in the present technological era where sticking with strict primary credit histories doesn't help distinguish between a 'good' and a 'bad' borrower, and ends up hurting both the individual borrower as well as the investor as a whole. We utilized machine learning classification and clustering algorithms to accurately predict a borrower's creditworthiness while identifying specific secondary attributes that contribute to this score. While extensive research has been done in predicting when a loan would be fully paid, the area of feature selection for lending is relatively new. We achieved 65% F1 and 73% AUC on the LendingClub data while identifying key secondary attributes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.