Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Handling Uncertainty in Social Lending Credit Risk Prediction with a Choquet Fuzzy Integral Model (1804.10796v1)

Published 28 Apr 2018 in cs.CE

Abstract: As one of the main business models in the financial technology field, peer-to-peer (P2P) lending has disrupted traditional financial services by providing an online platform for lending money that has remarkably reduced financial costs. However, the inherent uncertainty in P2P loans can result in huge financial losses for P2P platforms. Therefore, accurate risk prediction is critical to the success of P2P lending platforms. Indeed, even a small improvement in credit risk prediction would be of benefit to P2P lending platforms. This paper proposes an innovative credit risk prediction framework that fuses base classifiers based on a Choquet fuzzy integral. Choquet integral fusion improves creditworthiness evaluations by synthesizing the prediction results of multiple classifiers and finding the largest consistency between outcomes among conflicting and consistent results. The proposed model was validated through experimental analysis on a real- world dataset from a well-known P2P lending marketplace. The empirical results indicate that the combination of multiple classifiers based on fuzzy Choquet integrals outperforms the best base classifiers used in credit risk prediction to date. In addition, the proposed methodology is superior to some conventional combination techniques.

Citations (8)

Summary

We haven't generated a summary for this paper yet.