Stable invariance of the restricted Lie algebra structure of Hochschild cohomology
Abstract: We show that the restricted Lie algebra structure on Hochschild cohomology is invariant under stable equivalences of Morita type between self-injective algebras. Thereby we obtain a number of positive characteristic stable invariants, such as the $p$-toral rank of $\mathrm{HH}1(A,A)$. We also prove a more general result concerning Iwanaga-Gorenstein algebras, using a more general notion of stable equivalences of Morita type. Several applications are given to commutative algebra and modular representation theory. These results are proven by first establishing the stable invariance of the $B_\infty$-structure of the Hochschild cochain complex. In the appendix we explain how the $p$-power operation on Hochschild cohomology can be seen as an artifact of this $B_\infty$-structure. In particular, we establish well-definedness of the $p$-power operation, following some -- originally topological -- methods due to May, Cohen and Turchin, using the language of operads.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.