Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning Interclass Relations for Image Classification (2006.13491v1)

Published 24 Jun 2020 in cs.CV

Abstract: In standard classification, we typically treat class categories as independent of one-another. In many problems, however, we would be neglecting the natural relations that exist between categories, which are often dictated by an underlying biological or physical process. In this work, we propose novel formulations of the classification problem, based on a realization that the assumption of class-independence is a limiting factor that leads to the requirement of more training data. First, we propose manual ways to reduce our data needs by reintroducing knowledge about problem-specific interclass relations into the training process. Second, we propose a general approach to jointly learn categorical label representations that can implicitly encode natural interclass relations, alleviating the need for strong prior assumptions, which are not always available. We demonstrate this in the domain of medical images, where access to large amounts of labelled data is not trivial. Specifically, our experiments show the advantages of this approach in the classification of Intravenous Contrast enhancement phases in CT images, which encapsulate multiple interesting inter-class relations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.