Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Database Optimization to Recommend Software Developers using Canonical Order Tree (2006.12737v1)

Published 21 Jun 2020 in cs.DB

Abstract: Recently frequent and sequential pattern mining algorithms have been widely used in the field of software engineering to mine various source code or specification patterns. In practice software evolves from one version to another is needed for providing extra facilities to user. This kind of task is challenging in this domain since the database is usually updated in all kinds of manners such as insertion, various modifications as well as removal of sequences. If database is optimized then this optimized information will help developer in their development process and save their valuable time as well as development expenses. Some existing algorithms which are used to optimize database but it does not work faster when database is incrementally updated. To overcome this challenges an efficient algorithm is recently introduce, called the Canonical Order Tree that captures the content of the transactions of the database and orders. In this paper we have proposed a technique based on the Canonical Order Tree that can find out frequent patterns from the incremental database with speedy and efficient way. Thus the database will be optimized as well as it gives useful information to recommend software developer.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.