Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Enhanced Apriori Algorithm for Discovering Frequent Patterns with Optimal Number of Scans (1506.07087v1)

Published 23 Jun 2015 in cs.DB

Abstract: Data mining is wide spreading its applications in several areas. There are different tasks in mining which provides solutions for wide variety of problems in order to discover knowledge. Among those tasks association mining plays a pivotal role for identifying frequent patterns. Among the available association mining algorithms Apriori algorithm is one of the most prevalent and dominant algorithm which is used to discover frequent patterns. This algorithm is used to discover frequent patterns from small to large databases. This paper points toward the inadequacy of the tangible Apriori algorithm of wasting time for scanning the whole transactional database for discovering association rules and proposes an enhancement on Apriori algorithm to overcome this problem. This enhancement is obtained by dropping the amount of time used in scanning the transactional database by just limiting the number of transactions while calculating the frequency of an item or item-pairs. This improved version of Apriori algorithm optimizes the time used for scanning the whole transactional database.

Citations (5)

Summary

We haven't generated a summary for this paper yet.