Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Diagram Generation to Build Understanding and Usability (2006.08343v1)

Published 27 May 2020 in cs.AI

Abstract: Causal loop and stock and flow diagrams are broadly used in System Dynamics because they help organize relationships and convey meaning. Using the analytical work of Schoenberg (2019) to select what to include in a compressed model, this paper demonstrates how that information can be clearly presented in an automatically generated causal loop diagram. The diagrams are generated using tools developed by people working in graph theory and the generated diagrams are clear and aesthetically pleasing. This approach can also be built upon to generate stock and flow diagrams. Automated stock and flow diagram generation opens the door to representing models developed using only equations, regardless or origin, in a clear and easy to understand way. Because models can be large, the application of grouping techniques, again developed for graph theory, can help structure the resulting diagrams in the most usable form. This paper describes the algorithms developed for automated diagram generation and shows a number of examples of their uses in large models. The application of these techniques to existing, but inaccessible, equation-based models can help broaden the knowledge base for System Dynamics modeling. The techniques can also be used to improve layout in all, or part, of existing models with diagrammatic informtion.

Summary

We haven't generated a summary for this paper yet.