A Generalization of Bellman's Equation with Application to Path Planning, Obstacle Avoidance and Invariant Set Estimation (2006.08175v2)
Abstract: The standard Dynamic Programming (DP) formulation can be used to solve Multi-Stage Optimization Problems (MSOP's) with additively separable objective functions. In this paper we consider a larger class of MSOP's with monotonically backward separable objective functions; additively separable functions being a special case of monotonically backward separable functions. We propose a necessary and sufficient condition, utilizing a generalization of Bellman's equation, for a solution of a MSOP, with a monotonically backward separable cost function, to be optimal. Moreover, we show that this proposed condition can be used to efficiently compute optimal solutions for two important MSOP's; the optimal path for Dubin's car with obstacle avoidance, and the maximal invariant set for discrete time systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.