Papers
Topics
Authors
Recent
2000 character limit reached

Estimation of dense stochastic block models visited by random walks (2006.08010v2)

Published 14 Jun 2020 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: We are interested in recovering information on a stochastic block model from the subgraph discovered by an exploring random walk. Stochastic block models correspond to populations structured into a finite number of types, where two individuals are connected by an edge independently from the other pairs and with a probability depending on their types. We consider here the dense case where the random network can be approximated by a graphon. This problem is motivated from the study of chain-referral surveys where each interviewee provides information on her/his contacts in the social network. First, we write the likelihood of the subgraph discovered by the random walk: biases are appearing since hubs and majority types are more likely to be sampled. Even for the case where the types are observed, the maximum likelihood estimator is not explicit any more. When the types of the vertices is unobserved, we use an SAEM algorithm to maximize the likelihood. Second, we propose a different estimation strategy using new results by Athreya and Roellin. It consists in de-biasing the maximum likelihood estimator proposed in Daudin et al. and that ignores the biases.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.